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SUMMARY

The problem of developing guidance information for changing the orbit of
a vehicle by using its aerodynamic lifting capability is considered. Aero-
dynamic maneuvers reduce propulsive control system requirements to achieve a
range of orbit transfers of practical interest. As a consequence, rocket
fuel, and hence, the tremendous cost of transporting additional fuel mass to
orbit are saved. 1In order to achieve these savings, guidance laws must be
developed for the aercdynamic portion of the maneuver sequence., When the
atmospheric maneuver is accomplished entirely aerodynamically., it is termed an
aeroglide maneuver. The approach taken for developing the aeroglide guidance
law is to analytically approximate the solutions to those control problems
which optimize the final path angles for a given energy loss. A detailed
analysis of the optimal heading angle problem is provided, but the methods
used are equally applicable to the coplanar, orbit transfer problem wherein
the final flight path angle is optimized.

The optimal heading angle problem for a given energy loss is equivalent
to the minimum energy loss problem that accomplishes a desired change in the
orbital inclination of the vehicle. Analytic expressions for the optimal
controls (bank angle and lift) are developed as solutions to the approximate
state/Euler system of differential equations for the optimal heading angle
problem. The optimal control solutions are characterized by three approxima-
tions, valid in separate regions of the flight, which are derived using asymp-
totic theory of linear differential equations containing a small parameter.
The perturbation parameter depends on the scale height of the atmosphere,
assumed to be exponentially varying with altitude, and the planet's radius.
The optimal control solutions are a composite of two slowly varying (outer)
solutions, that are valid in the region of flight near the boundaries, and a
rapidly varying (inner) solution that is valid in the region where the minimum
altitude for the flight occurs. Numerical analyses, required to determine the
matching conditions that continue the two outer solutions through the inner,
trangition zone are not included. Nevertheless, the analytic formulas for the
optimal controls form the basis for an on-board guidance algorithm and are
also useful for developing engineering insight into the optimal steering
policy.

Aerodynamic heating constraints, neglected in this analysis, need to be
imposed to obtain useful guidance laws. Additionally. guidance corrections
for off-nominal atmospheres must be made for on-board use.

LIST OF SYMBOLS

AB constants in general solution for w
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C coefficient in solution for Ay,
Cp drag coefficient

Cbo drag coefficient at zero lift
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lift coefficient

integration constant

constants in general solution of parabolic cylinder equation
drag force on vehicle

parabolic cylinder function

specific energy of vehicle

X
exp (] (arpax)

Xe
nondimensional energy

maximum lift to drag ratio

X
exp (f (q/Y)dX)

X
conversion factor for expressing slugs in pounds-mass
Hamiltonian

geometric altitude of vehicle above Earth's surface
nondimensional altitude

inclination of orbital plane with respect to Earth's polar axis
performance index

induced drag factor

lift force on vehicle

inner expansion for bank angle

"mass of vehicle

"reduced" vertical load factor at the turning point

order symbol

variable displacement coefficient in turning-point-problem equation
variable proportional to gravitaticnal less centripetal acceleration
radius of Earth

radial distance from Earth's center to vehicle

vehicle reference area

nondimensional arc length of trajectory

elapsed time

state variable replacing energy in -approximate vehicle model

speed of vehicle



v nondimensional speed of vehicle

w weight of vehicle

Wo zeroth-order inner, dependent variable for turning point problem

w outer, dependent variable for turning point problem

X stretched independent variable for turning point problem

X nondimensional arc length relative to the turning point

yA nondimensional lift loading

o value of flight path angle derivative at turning point

B reciprocal scale height of Earth's atmosphere

Y flight path angle

r gamma function

AV velocity impulse approximation for fuel usage

€ small parametar
down range angle of vehicle

Ay inner expansion for Ky

A nondimensional lift

XQ) Lagrange multiplier variable for state ()

)1} bank angle of lift vector, measurad positive clockwise from vertical,
when viewed from vehicle's nose

m gravitational constant for Earth

v index of parabolic cylinder function

£ "dummy" variable in recurrence relation

p air density

T "dummy"” variable of integraticn

¢ cross range angle of vehicle

y heading angle of vehicle

Subscripts

e initial value (at vehicle entry into atmosphere)

f final value (at vehicle exit from atmosphere)

min denotes minimum value

o denotes zeroth-order approximation

r denotes reference value for exponential atmosphere approximation

t denotes value at turning point

u denotes uniform approximation



Superscripts

0 denotes solution to left of turning point

r denotes solution to right of turning point

* denotes value at max (L/D)

( )’  denotes differentiation with respect to nondimensional arc length
INTRODUCTION

Aerodynamically assisted, orbit transfers are known to be more fuel
efficient than all propulsive (Hohmann) transfers (ref. 1.}. One application
for aero-assisted maneuvers is a high-Earth-orbit to low-Earth-orbit transfer
for returning vehicles, that service satellites, to the Shuttle. Another
application is for the Mars mission where aero-assisted maneuvers can be used
for rendezvous operations with other vehicles. NASA soon plans to launch an
aero-assist flight experiment to make measurements of the environment
surrounding the vehicle during sustained high altitude, hypersonic flight.

Recent numerical studies have appeared in the literature to determine
atmospheric trajectories that will minimize the amcunt of fuel needed for an
orbit transfer. In reference 2 optimal atmospheric trajectories are presented
for a coplanar transfer in which the apogee of the orbit is lowered. 1In
reference 3 optimal trajectories are computed for changing the orbital incli-
nation of a vehicle. Implementation of optimal control policies on-board a
vehicle, to take advantage of the aero-assist maneuver's fuel efficiency,
requires either the storage of optimal controls and trajectories for a large
number of boundary conditions or rapid on-board computations of optimal
trajectories for specific boundary conditions corresponding to the desired
mission. Thus, either large storage requirements or fast, on-board computa-
tional capabilities are necessary to implement optimal maneuvers. An alter-
native to either of these methods of implementing optimal steering is to
approximate the optimal control problem so that it may be solved analytically.
If sufficiently accurate guidance solutions can be found, the demands upon on-
board computational capability are reduced.

In references 3, 4, and 5, different approximations have been made to
determine guidance laws for the orbit plane change problem. In reference 3,
the term appearing in the differential equation for the flight path angle,
known as Loh's "constant.," is assumed to be constant on an optimal trajectory,
which makes possible the derivation of an optimal guidance approximation. 1In
reference 4, a regular perturbation approach is used to derive optimal guid-
ance approximations by first neglecting Loh's "constant” and then correcting
the solution by allowing variation in Loh's constant. 1In reference 5, a
singular perturbation approximation is derived which simplifies the optimal
control problem by reducing the order of the state/Euler system. resulting in
a relatively simple guidance solution. The approach taken herein-is similar
to those cited above in that the equations of motion -are written in terms of a
small parameter so that asymptotic theory for differential equations can be
applied to arrive at a solution to the guidance problem. This research was
undertaken to improve the accuracy of the approximations cited above.



MODELING AND PROBLEM STATEMENT

The problem of developing a guidance scheme for transferring a vehicle
from one orbital plane above the Earth to another, using & minimum of fuel, is
considered. If heating constraints on the vehicle are not imposed, the
maneuver sequence consists of exoatmospheric portions, during which the
vehicle maneuvers using its rocket motor, and an atmospheric portion, during
which the vehicle maneuvers aerodynamically to change heading by modulating
angle of attack and bank angle. The imposition of heating constraints on the
vehicle during atmospheric flight may lead to additional thrusting arcs to
avoid overheating, reference 6, but such constraints are not considered in the
present formulation. The maneuver sequence begins with a deorbit impulse to
cause the vehicle to descend toward the Earth's atmosphere. After entering
the atmosphere, the vehicle maneuvers to change its heading to the desired
orbital inclination by modulating angle of attack and bank angle. A boost
phase follows the aerodynamic maneuver to increase altitude of the vehicle to
a desired apogee. Finally. a rocket burn is used to circularize the orbit.
Because the exoatmospheric portions of the flight can be calculated in closed
form using Kepler's equations and AV impulses to approximate fuel usage,
interest centers on the atmospheric phase of flight for obtaining analytical
expressions that can be used for guiding the vehicle. The atmospheric maneu-
ver problem can be stated in terms of the AV impulses of the minimum fuel
problem, resulting in a one-dimensional parameterization of the atmospheric
guidance problem in terms of the deorbit AV impulse and a performance index
which minimizes the energy lost during the aerodynamic turn, reference 3, The
vehicle's motion is described in terms of six state variables: specific

energy, E=v2/2 - p/r; flight path and heading angles, yand y: down range and
cross range angles, 0 and ¢: and the radial distance, r of the vehicle from
the Earth's center. The controls for the vehicle are lift, L: and bank angle,
. The velocity of the vehicle is denoted by V, § is the universal
gravitational constant for the Earth, m is the vehicle's mass, and D is the
drag force on the vehicle, which is assumed to be parabolic with respect to
lift. Time, t, is replaced by nondimensional arc length,

s = J (v/r) dt (1)

as the independent variable. The point-mass equations of motion of the
vehicle may be written with respect to a vehicle centered reference frame that
rotates above a spherical Earth, inertial frame as depicted in figure 1.

dr/ds = rsiny . (2)
d8/ds = cosycosy/cos¢d (3)
dd/ds = cosysiny (4)
dE/ds = -Dr/m (s)
dy/ds = Lrcosp/(mV2) - [ u/(rv2)-1]cosy (6)
dy/ds = Lrsinp/(mV2cosy) - cosycosytand (7)

The cross range angle. ¢. is small near a node so that the last term on the
right-hand side of equation (7) may be neglected if the turn is made in the



vicinity of a node. If the boundary conditions on ¢ and Oare not prescribed,
these state variables are ignorable since neither couples into the remaining
equations. Thus, the order of the system is reduced by two. Since ¢ is
small, the equation for orbit inclination,

cosi=cosdpcosy = cosy (8)

and the heading angle approximates the inclination angle near a node.

r’ = rsiny (9)
E'=-Dr/m (10)
v = Lrsinw/(mV2cosy) (11)
¥'= Lrcosp/mVé-[ wi(rve)-1]cosy
The following nondimensional variables are introduced to determine if any
further simplifications can be made. Let
= prSCere'h/Zm (13)
h = B(H - Hp) (14)

where H is the altitude of the vehicle above the Earth's surface, Hr is the
reference altitude fcr the exponentially varying atmosphere, pr is the air
density at Hp, S is the vehicle's reference area. and

rp = R + Hg ‘ (15)

where, R is the radius of the Earth and

C, = CL at max (L/D) (16)

The drag coefficient is assumed to be parabolic

Cpg (1432) = G (1+A2) /28" (17)

i

2
Cp = Cp, + KCp

where, E° = (L/D) and A = CL/Cy. Also let

max

v =V Vrr/ﬂ (18)
€= Er /p=v2/2-(1 + eh)"1 (19)
r/ryr = (1 + €h) (20)



be the nondimensional speed, energy. and radius variables, respectively. where

-1 -
e = (Pry) is a small parameter (of order 1073 for the Earth). Substituting
equations (13) through (20) into equations (9) through (12). one may rewrite
the governing equations of motion for the vehicle as

’

h = e l(1+eh)siny (21)
e = -Zpe N(1+A2)(e + 1 + ehe)/E" (22)
v’ = Zre B(1+eh)Asinpu/cosy (23)
y' = Zpe Mhcosp(1+eh) - (1+e[h/(e+1) -h]-1)/[2(e+1)]cosy ' (24)

to 0(€2), where the binomial theorem has been used to expand r/ry. After
making a final change of variables

u = 1n (&+1) (25)

and substituting equation (25) into the system, (21) through (24). one obtains
to 0(e) the following approximate model., describing the vehicle's motion:

u = -zZge h(1+22)/E" (26)

v’ = Zre DPAsinp/cosy (27)

Y, = Zye Bhcosp - qeosy (28)

h = e l(1+eh) siny (29)
where,

qQ=eY/2 - 1. (30)

The approximate model of the vehicle. (26) through (29). retains the term, q.
which is a factor in Loh's "constant” but does not account for variations in
gravitational acceleration due to altitude. Additionally. the model assumes
that the effect of altitude changes on the motion are dominated by changes in
air density rather than changes in potential energy. Thus, potential energy
changes are neglected on the right-hand sides of equations (26) through (29).

Finally, variations with Mach number of the aerodynamic coefficients, Cp and

E", have been neglected at this order of approximation so that Zy is regarded
as constant.

OPTTIMAI. CONTROL PROBLEM

If the final path angles are specified., a minimum energy loss trajectory
to a specified final altitude will result in minimum AV fuel burns to achieve
a desired final orbit. By restating this problem in terms of a specified
energy loss, one may instead, optimize the final path angles. The purpose of
the restatement is to simplify the final boundary conditions on the optimal
vertical 1lift component, which equals zero in this instance. Only the plane



change problem is discussed in detail herein. The plane change problem is
equivalent to extremizing the final heading angle for a specified energy loss,
so that the payoff is

sove = v s, 1)

The Hamiltonian for this problem is
H = Aoy’ + Agu + Aph' + AyY. (32)
where,

+1 = max Yy = max i

7\.0 ={ . (33)
-1 = min Yy =min i

By choosing Ag = + 1, one seeks the optimal bank angle and lift controls to
maximize the final heading angle with ctarting conditions. Ue. he. Ye. and
final conditions uf. hf. so that the final path angles are optimized.
Substituting the state equations. (26) through (29). into equation (32). one
obtains

H = Zre'hksinulcosy—kuzre'h(1+lz)/E' + Ape "l + Eh)siny4—ly(zre’hlcosu -

qcosy)
(34)

Since the final arc length is not specified, H=0 on an extremal. The optimal
controls are given by

OH/OA = -2A 4 A/E" + sinp + Aycosp = 0 (3s)
and '
oH/op = cosp - Aysinp = 0, (36)

where second-order terms in Y have been neglected.

Solving equations (35) and (36) simultaneously. one obtains

A=E*V 1402/ (2hy) with Ay >0 (37)
coth = Ay (38)

The Lagrange multipliers satisfy
Ay = - OH/du=-Aye U/2 (39)

k{= -9H/dy=- e "1Ap(1+eh)cosy~- (Ayq + ZAsinpsec?y) siny (40)

!

Anh = -oHOh = H - lh€'1(1+eh)siny+ql7 cosY - Ap siny
= -Ap e Mite(h+1)] siny + qly cosy (41)



since H = 0. Differentiating equation (40), one obtains

el = -sinyky' - ghy + 0(e) + 0(sin?y) (42)
The solution to equation (42)., rewritten as

ery + Y M+ qly=0 (43)

for small Yy, gives the cotangent of the optimal bank angle control. Equation
(43) is regarded as a linear equation with coefficients depending on the inde-
pendent variable, s. The behavior of the solution depends on the coefficient
of the damping term., which is the path angle, Y. According to reference 7., if
Y(se) <0. there will be no boundary layer for the solution of Ay at se. and
that if y(sf) > 0. there can be no boundary layer for Ay at sf. In the
present problem Y(se) < 0 for entry into the atmosphere and y(sf) > 0 for
exit. Thus, no boundary layers are expected in the solution of (43). Since ¥
(se) <Oand y(sg) >0. Y(s¢t) = 0 for some st. such that se¢ < st < sf. The

simplest possible situation is that Y vanishes only once on the interval so
that

Y<O0 for SoS$s <s¢
¥>0 for st<s S$s¢f
Y(s¢) =0. (44)

The solution to equation (43) can be sought in two steps with the aid of
assumptions (44). The first step is to find the solutions for s away from s,
which break down at s = s¢. The second step is to find a solution in a neigh-
borhood of s = st which is asymptotic to the two solutions found in the first
step. Problems that contain internal transition zones. such as this, are
known as turning point problems, reference 8, with the turning point. in this

case, occurring at 8 = st when Yy =0,
ANALYSIS OF THE TURNING POINT PROBLEM
The optimal bank angle is found from the solution to equation (43),
which can be placed in a standard form whose solution is known. For
convenience later. the independent variable is translated by letting

x = (s - s¢) (45)

so that x(0) = -s¢ and x(s¢) = 0. The dependent variable is transformed
from Ay to w by letting

Ay = w exp('jz(y/ze)dt). (46)

Substituting equation (46) into equation (43) and factoring off exponential
terms, one obtains

W oo (2€)72Q(x)w = 0 (47)



where,

Qx) = y2 + Zev'—éeq- (48)
Equation (47) is the standard form for analyzing turning point problems with a
large parameter, (2€) "%, reference 8.

Quter Solutions

The general solution to equation (47) is given by

w= 1ol 174 [aexp (J5(Varzerar ) + mexp (- [*(Varzerar) ] + ote)  ao

where A, B, and ¢ are constants to be determined. The fractional powers of
Q(x) in (49) are determined using the binomial expansion, assuming y(x) is
away from zero, outside the transition zone. From equation (48)

va =y + ey’/y-2eq/y (50)

lQl1/4 = Iyl + o(e). (51)

Substituting equation (46) into equation (49). together with (50) and (51),
one obtains for the zeroth-order approximation to Ay to the left of the
turning point

2 ) “(h-
Ay =aiE 1+ age (MR DRy % <0 (52)

where,
x
E = exp (Jxe(qu)dt) . (53)
To the right of the turning point,

)\.YO = b1F -1+ bo e'(h"hmi_n)F/’Y: x> 0 (54)

where,

F = exp (~J§f(q/y)dt) . {55)

The zeroth-order solutions for Ay given by equations (52) and (54) describe
the cotangent of the bank angle control outside the transition zone, i.e., for

lx | >0.

The solutions may be regarded as a mixture of terms (ajE"}, azE/y. blF'l.

byF/Y) which are functions of the slow scale x and of the term, e'(h'hmin).

10



which is a function of the fast scale. x/€, since h-hpin = J(ye)dx. The

solutions (52) and (54) break down in the transition zone where y=0. When x
is small in the transition zone, Y is assumed to have the Taylor series
expansion

14

= + = +
¥ y|x=0x . ox .o (56)
where, a > 0. Likewise

'y'—nx and ¢ = q(0) = qt (57)

as x - 0¥, Under assumptions (56) and (57), the differential equation for w,
in (47)., becomes

Wo” - (2€) 2[(ox)? + 2e & - 4€qtlWp = O (58)
where, W denotes the zeroth-order inner variable for the solution to equation

(47) when x is small. Likewise, under the swall x ascsumptions. the outer
solutions are, from equations (52) and (54):

2 X 1 0w X

AYO =ajexp (-Jxe(qt/aﬂdt) + a, (ox) 1o-0x /2€ exp (Ixe(qt/andt) (59)
Ay =Vb (fxf fot)dt + “1g-om?/2e (~fo Jo)dt)

Y, 1exp \J_ (qc/at)dt + bolax) ‘e exp < Tt at)dt/ . (60)

The inner solution to equation (58) can be expressed in terms of the stretched

dependent variable, X = Yo/e x. This solution leads to an inner expansion

for Xy. denoted by A The inner solution. AY . for large X can be matched
o

Yo'
with the outer solutions, equations (59) and (60), for small x.
Inner Selution

Equation (58) for the inner variable W, can be rewritten in terms of the

stretched dependent variable X = Va/e x as
d?w, /dx? - (xZ/4 + 1/2 - q /@) Wy = 0. (61)

Equation (61) is the parabolic cylinder equation whose solution is known in
terms of the parabolic cylinder functions, Dy(X) and Dy(-X), when 4 is not a
nonnegative integer. The solution to equation (61) is given in reference 9 as

W, (X) = ¢1Du(X) + ¢, Dy(-X) (62)

where, v = q¢/0-1, so that the solution for Ay, is given by

11



Ayo (X) = e X2/4 [ Dy(R)+ epDy(-X)]. | (63)

The asymptotic properties of the parabolic cylinder functions for large X are
used to match with the outer solutions for small x. The asymptotic properties
of the parabolic cylinder functions are given by

2
Dp(X) ~ ()Y e X /4 a5 X 54w (64)
Dy(-X) ~ (x)"¥°1 X274 V2r/T(—y) as X —+oo (65)

where T denotes the gamma function.

The inner expansion., equation (63). is first expressed in terms of the
asymptotic limits of the parabolic cylinder functions as X — teo and then
matched with the outer expansions for small x as =x -0t From equations
(63) through (65) as X - +oem,

Ap ) = ey (/0L XI2 4 o) () 79t/ Vam/T(1-q, /00 (66)

Since the first term on the right-hand side of (66) is exponentially small
compared with the second. the first term can be neglected in comparison with
the second. Next, the inner limit may be expressed in terms of the outer
dependent variable. x, in preparation for matching. as

AYO—-CZ c1 x-qt/a, ags X & + (67)
where,
¢ = (Ve )9,/ r-q, /) Wi (68)

Similarly, to the left of the turning point the inner limit is given by

AYO"CI C'l(-x)'qt/a , ags X-9 - oo, (69)

r
Equation (67) is matched with lY as x - 0%, and equation (69) is matched
o]

0 r
with Ay as x - 07. The second term in equation (60) for ky is, for small
0
)

€, exponentially small compared to the first so that the second term may be
neglected in comparison with the first. Thus,

r
KY ~ bl e_(qt/a)I“IX/xfl , as x =0T, (70)
o]

12



Similarly, from equation (59)

XQ ~a, e-(qt/a)ln[-x/(-xe)]' as x =0, (71)

Yo

r

A digression to discuss the boundary condition on A is necessary before
o

r

proceeding with the matching process. The boundary condition on XY is zero
o

since the final value of Y is unspecified. This boundary condition can only
be satisfied asymptotically for large x (since by #0). This is possible

since ¢ > 0 and ¥ > 0 to the right of the turning point so that the outer
r

solution, XY . from equation (54) decays from the turning point. Thus., b,y is
o
r

simply a scale factor for XY . Thus, the upper limits on the integrals in
)

equation (60) are set equal to + e to indicate that the final boundary
r

condition on Zy is satisfied asymptotically, i.e., ky(x) —0as x =+, and
o

by =1. Returning to the matching procedure, one matches equation (54) with

equation (67), using (70), by equating the two limits as X—+e and x >0t

c, >C exp fzf(q/y—-qt/at)dt. (72)
so that
+o0
cy = C exp J, (q/y-q/atr)dr. (73)

Similarly, to the left of the turning point, equation (52} is matched with
equation (69)., using (71), by equating the two limits as X-—»—-ocand x 507 :

X
¢y - al('xe)qt/aCexp Ixe(q/Y" Qt/af)dT- (74)
so that
X
c; = a; (-xe)qr/aCexp Joe(q/y—-qt/at) dr. (75)

Equations (73) and (75) provide the connections between the coefficients, ¢}
and c2, of the inner solution and the coefficients of the ocuter solutions, aj
and by, that are determined by the boundary conditions. Thus. the two outer
solutions have been continued through the transition zone. The matching
procedure showed that exponentially small terms were neglected in forming a
leading order uniform approximation. Thus, a3 = by = 0 for the leading order

13



approximation. These terms enter into the solution at the next higher approx-
imation (ref. 10). The leading order uniform approximation for is con-
structed by combining equation (66) with the connection formulas. (72) and
(74):

Jaiform 2 tion for A

2
Ay, = € e @ /A€ (aGIDy (Va/ex) + B (x) Dy (Vo/e =) (76)
where,
A{x) = a; (-xe)qt’,OL exp J};e(q/y- qt/at)dr (77)
+o0
B(x) = exp Ix (q/y-—qt/at)dt (78)
¢ =(Vale)3t/%[ra-q /@) ) /V2n (79)
V= q/a-1=-(ng-2)/{(ng-1) (80)
ny = (L comﬂ(VV-sz/rr)x = 0. (81)

In equation (81)., ny¢ is the "reduced” vertical load factor., evaluated at the
turning point: that is, n, is the ratio of the vertical lift force at the
turning point to the weight of the vehicle. reduced by the centrifugal force
at the turning point.

The results of this section are summarized by equations (76) through
(81) and the following equations for the outer and inner solutions: ’

Quter Solutions:
r +o0
lyo = eXp Jx {qg/Y)dt. =x >> 0 (82)
R JX
KYO::K%XG) exp (- Xe(q/y)d‘c),x << 0 (83)
Inner Solution:
_ 2 — -
Ayg=e o x /éetchD(Ja/ex) + czDu('Ja7€x) (84)

14



cp = CA (0) (85)

Cy C B (0) (86)
Equations (76) through (81) give the leading order uniform approximation for
the cotangent of the coptimal bank angle control over the entire interval,

Xo £x S+eo, In equation (79), C is a constant for a fixed atmosphere,
"reduced" load factor at the turning point and desired minimum altitude for
the maneuver. The coefficients A(x) and B(x) are functions of the slow depen-
dent variable, x, while the parabolic cylinder functions and the exponential
factor are functions of the fast dependent variable, X=va/e x, in the
transition zone. The uniform expansion, for large [X|, is asymptotic to the
outer solutions, which are functions of the slow variable., x, and satisfy the
boundary conditions on XK at the two end points. The inner solution, equation
(84), depends on the minimum altitude for the maneuver and the "reduced" load
factor at the turning point., With the uniform approximation for the bank
angle control in hand. the reader’'s attention is focused on determining the
optimal, normalized lift, A

Determination of Normalized Lift
The approximation for the multiplier, ly, has been derived in terms of

’
the state and dependent variables, so that can be determined., also, in

terms of the state and dependent variables. The Hamiltonian can thus be
expressed in terms of the state and dependent variables and the unknown

multiplier, lu.ﬁeeded to determine the optimal normalized 1lift, A

The Hamiltonian can be rewritten in terms of l} and (2A,/E*) as

2
H = (22 /E")?+ 2b(2)»u/E*)—(1+lYU) =0 (87)

using equations (34)., (37), (38), and (40). 1In equation (87)

b =2 'y, + Ay (88)
Z =pSCre M/am  (eq. 13) (89)
Ay, =C e /4 atDy(Vale x) + B(x)Dy(-Vale %)) (eq.80) (90)

Thus, (ZKuﬂ?) is determined as the positive root of equation (87),

(2A,/E)=-b + 4[b2 + (1 + Ay,2) (91)

15



Thus, the approximation for the optimal normalized 1lift is, from equation
(37).

A=a + Va2 + 1 (92)

a = b/\fl * 2 (93)

The variable, b, in equation (93) depends on l&u,from equation (88).

Differentiating equation (90), one obtains

l@h = C e'ax2/4€(-(q/y—qt/ax)A(x)DD(X)—(q/Y-qt/ax)B(x)DU(-X)
+ A(x) d[e-axz/ée DU(X)]/dx + B(x) d[e-ax2/4€ DD(-X)]/dx (94)

The derivatives in (94) can be found from the recurrence relation (refs. 11
and 12)

dle %4 b (®)] /a8 = -e” 44 Dy(E). (95)
so that equation (94) may be simplified as

My, = — (2/v-qp/ox) Ay, + Cce-0x?/4€ \alel-A(x) Dq,/a(X) *+ B(x) Dg /a(-X)]
(96)

From equation (88)

b = 2 ly{(qe/ox)Ay +C e-ax?/he \gje [-A(x)Dq /alX) + B(x)Dqt/a(~X)]}
(97)

so that the coefficient of (2luﬂf) in equation (87) can be determined, and
hence, the value of A can be determined from equations (92) and (93).

The value of A for large |X]| can be determined from the asymptotic
properties of Dqt/a(x):

D, /o(X) = (X)79./®" 1 Van e K214/ (-q, /@)
= F(l-qt/a)Dqt/a-l(X)/r(-qt/a)
= (-q /0)Dq/a-1(X). as X = + e (98)

Thus, for large positive X, equation (97) has the asymptotic property,.
—7-1 - =
b ~2 y{(qt/ax)lyu (qt/ax)Kyu) 0, (99)

where exponentially small terms have been neglected. Thus, cutside the
transition zone, b ~0, so that
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A~1 as X D+ (100)

which implies

Cp ~CL* as X —+oo (101D)
Similarly,
C, ~CL* as X — - (102)

also.

Formulas have been derived fcr an approximation to the optimal
normalized lift coefficient, A, by solving a quadratic algebraic equation for
the unknown multiplier. 2Ay/E*, from which Ais obtained from the extremal
control formula in terms of 2Ay/E”. The value of A was shown to be asymptotic
to one, outside the transition zone. This implies that the lift coefficient
is asymptotic to its value at max (L/D), outside the transition zone.

The next section contains a summary of the formulas needed to synthesize
the optimal guidance commands.

Summary of Optimal Guidance Ccmmands

Formulas have been derived in the previous two sections for the optimal
bank angle and lift controls for the problem of maximizing heading angle for a
given energy loss. The formulas assume that full, reduced-order state and
dependant variable estimates are available from the vehicle's navigation
computer. For preliminary simulation studies one may assume that the reduced-
order model., derived herein, supplies these estimates perfectly (i.e.,
uncorrupted by noise and other uncertainties).

The following is a summary of the optimal control formulas:

Bank Angle Control

u==arccot(lyu) (103)
where,
kyu=Ce'ax2/4€ [A(x) Dy(Vase x) * B(x) Dp(-Vale x)] (104)
X
Alx) = ly(xe)(~xe)qt/aexp Ixe(q/Y*qt/at)dT (105)
B(x) = exp J+ (g/y-q./at)dr (106)
X
¢ = (Wa/e) 9 /@ [(1-q /o)] /V2m (107)
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v=qt/a—l=—-(nt - 2)/(nt - 1) (108)

ng = [L cosw/ (W - mv2/r)] g (109)
e = 1/(Bry) (110)

Dy(X), Dy(-X) are given in tabular form (ref. 13)

S

x = s¢ + J.O(V/r)d‘t i Xe= -St (111)

g=eW2 -1 = (WViry - 1) : q = q(0) (112)

Y=J"{dx (113)

‘y’ = 7 Acosph—q a:Y"x=O (114)

Z = Zre’ D ; h = BH-H) (115)

Zr = prSCL*rr/Zm (116)
Lift Coptrol

A=a + Va2 + 1 (117)
where,

a=b> /1[1 + Ay (118)

b=.7..’17{(qt/0tx)7u,u+Ce'°"‘2/"*6 Ve [-A(x)Dqy/a(Va/e x) + B(x)Dqt/a(-‘JGIe x)]

(119)
VYalues of the State and Related Variables

h=1_[hdx . u=fudx, y =]y’dx (120)
h' = e 1(1+ eh) vy R (121)
u = -z (12)/E" (122)
Y =ZAsinp (123)
E= pmeY-1)/ry (124)
v=\/z[!§+ﬁ/<rr +H)] (125)
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In order to implement the feedback formulas for the optimal guidance
commands, one must write a numerical simulation to determine the integrals for
the state equations as well as the integrals needed for matching. While this
has not been completed. herein, an analytical example of the procedure for
conducting numerical studies is provided in the next section.

ANALYTICAL EXAMPLE AND DISCUSSION

Although numerical simulations are necessary to complete the matching
procedure and to determine the accuracy of the optimal guidance approximation,
the behavior of the bank angle control may be examined in the transition zone
where the guidance law reduces to an analytical formula. Data from reference
3, listed in Table 1, are used for the vehicle model in this example and tabu-
lated values of the parabolic cylinder and gamma functions, given in reference
13, are used to calculate the guidance commands.

Table 2 contains estimates of the guidance parameters as a function of
minimum altitude for the maneuver. The constants, ¢} = -.0542 and cy = .2748,

were selected to form the inner approximation, AYo‘ as a linear combination

of parabolic cylinder functions multiplied by e'Xz/@ The index, v = -.5, for
the parabolic cylinder functions was selected for this example, which corre-
sponds approximately to a 150,000 foot altitude trajectory with a bank angle
at the turning point of 75° and a normalized lift coefficient, A= 1,

The index for the parabolic cylinder functions. v, depends on the
vertical, "reduced" load factor, nt. at the turning point. n¢ is a function
of Hyjn. V. and Acosp at the turning point., so that care must be exercised in
estimating V. The values for v given in Table 2 lie in the range, -1< v<0,
which corresponds to a range of reduced load factors, ny > 2. For 1< ngy <2,
V is non-negative, and when vV is a non-negative integer, the guidance formulas
are not valid since Dy (X)and Dy(-X) are linearly dependent in this case.
Although the guidance solutions can be formulated more generally in terms of
other linearly independent solutions of the parabolic cylinder equation, one
would expect, for most applications, that the reduced load factor exceeds a
value of two. In this event v is a negative number greater than -1.

Data for Ayo and the corresponding bank angle. My, are tabulated in

Table 3 and plotted in figure 2. Values for the two outer solutions, KY and
)

r
XY , are tabulated in table 4 as functions of the inner variable, X. The
o
outer solution approximations for small x:
r B
Ho = cot 1{ea(x/2)° /2] : x> 0 (126)
0 -1 . -1/2 ;
B, = cot *ley(-x/2) ] 1 Xx<0 (127)

are also plotted in figure 2 so that the behavior of the inner and outer solu-
tions can be observed in the overlapping regions, where these solutions match.
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For purposes of comparison the optimal bank angle control, given in
reference 3, is superimposed on figure 2. The agreement between the inner
solution guidance approximation, Mg, and the optimal bank angle control, Hopt.
is excellent in the neighborhood of the turning point, X = ¢. The agreement
between the optimal bank angle., Mopt. and its approximation. ax, near the
turning point is also good. Away from the turning point the outer solution

r 0
approximations for small |x|, u, and W . are asymptotic the inner solution M,.

for large |X|. The outer solutions for large X are not in numerical agreement
with the optimal solution for the bank angle. indicating the need to adjust

2
the initial condition on g by adjusting XY (x¢). Matching the inner and
)

outer solutions for specified initial conditions requires a numerical
simulation, which is not included in this report.

For numerical studies one could begin by integrating trajectories from
the turning point to the boundaries using the estimates for the state given in
Table 2. The integration to the right of the turning point could start at
x = 0%, by extrapolating the state from x = 0 to x = ot using a Taylor expan-
sion., Using the guidance formulas as feedback controls, the reduced state
equations would be integrated to determine the change in the state from the
turning point. The flight path angle must remain positive to the right in

r
order to satisfy the boundary condition on Ay . At the terminal point the
)

energy lost and heading angle change from the turning point would be
available. These values would be added to the values of "delta" heading angle
and energy loss for a similar state-equation integration to the left of the
turning point. The integration to the left, however, will undoubtedly not
match the initial conditions on the state. In this case the initial condition

2
on lv can be adjusted to change the outer soluticn teo the left of the turning
o

peint. An interative process ensues because AY (xe) is proportional to <y of
o

the inner expansion., Ay,. The numerical analysis would proceed by adjusting

not only ci but also some of the parameters in Table 2. New values for the

index of the parabolic cylinder functions and a new estimate for Ayowould be

calculated. This procedure would be repeated until the initial conditions are
r

satisfied sufficiently accurately and the final condition, ly ~0as x D+
: )

with ¥y>0 . holds. A numerical procedure such as that outlined above should

produce bank angle commands that are qualitatively similar to those computed

with a numerical optimization computer code.

To complete the numerical analysis, one would use the uniform guidance
law, obtained by matching with the reduced model, as a feedback law for the
full system, equations (2) through (7), to compare optimally guided trajec-
tories with trajectories computed using a numerical optimization procedure.

This analytical example has shown that optimal trajectories for the
minimum fuel/plane change problem can be parameterized by the minimum altitude
for the maneuver in the following sense. Each minimum altitude corresponds to
a trajectory that satisfies initial conditions and results in a loss of energy
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and change in heading angle to the left of the turning point. The energy loss
and "reduced" vertical load factor at the turning point determine the index of
the parabolic cylinder functions. The loss of energy and change in heading
angle to the right of the turning point. when added to the corresponding
values to the left of the turning point, result in an energy loss and maximum
(minimum) heading angle change for the entire maneuver, parameterized by the
minimum altitude of the maneuver. '

CONCLUDING REMARKS

Formulas have been derived for computing approximations to extremal
controls, normalized lift and bank angle. for the problem of minimizing energy
loss to change the orbital inclination of a vehicle. Asymptotic analysis was
used to derive formulas for the bank angle control that were valid in three
different regions of the trajectory. Two outer solutions were found to
approximate the bank angle control near the upper limits of the Earth's atmo-
sphere. These solutions break down at the minimum altitude of the maneuver,
when the flight path angle is zero. In the transition zone, near y= 0, the
optimal bank angle control was described in terms of parabolic c¢ylinder
functions. The two outer solutions were connected through the transition zone
by forming a uniform solution, in terms of the parabolic cylinder functions,
to approximate the optimal bank angle control over the entire trajectory. The
approximate., optimal 1lift coefficient was subsequently determined by solving a
quadratic algebraic equation. The 1lift coefficient was determined to be
asymptotic to its value at max (L/D) when the trajectory is far from the
turning point. The guidance formulas are in terms of state and dependent
variables and parameters that define the index and argument of the parabolic
cylinder function. A numerical example was given to illustrate the utility of
the method used to construct the guidance formulas. Construction of the inner
solution showed that optimal trajectories will be parameterized by the minimum
altitude selected for the flight and the "reduced" vertical load factor at the
turning point, which determines the index of the parabolic cylinder function.
Numerical studies, however, must be conducted to obtain matching conditions
and to verify the accuracy of the guidance law. The guidance formulas require
feedback of energy, altitude, and flight path angle from the vehicle's
navigation computer and are suitabtle for forming the basis for an on-board
optimal guidance system.
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TABLE 1

VEHICLE/MODEL PARAMETERS

S = 126 ft2 H=1.409 x 1016 ft3-gec~2
m = 332 slugs €=1.29 1073
C*t = .151 He = 180,000 ft
B = (27000 £t) ! p, = .356 x 1074 1lbm/ft3
r, = 20,900,000 ft gc = 32.2 1bm/slug
Zp = Cy*ppSrr/2mg, = .662 (eq. 116) E* = 2.36

TARLE 2

GUIDANCE SYSTEM PARAMETER ESTIMATES

(Ref. 3)
Hpin (Est) Z(Hpin) Ve (Est) qt ne(p, = 75°) v o Ve
(ftx1000) (eq 115) (ftx1000) {eq 112) (eq 109) (eq 108) (eq 114)
175 .797 25 .0787 2.62 -.383 .128  10.0
150 2.01 24 170 3.06 -.515 350 16.5
125 5.08 23 274 4.80 -.737 1.04 28.5
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TABLE 3

Inner Sclution

Ay, (X) = [-.0542 D-1/2(X) + .2748 D.1/3(-X)]e X*/4

= cor-1(
My (X) = cot™1{Ay )

Multipliers Bank Angles (deg)

Ay(X) Ay (-Xx) M(X) M(-X)

.0 .2688 .2688 75.0 75.0
.5 L3420 .1620 71.1 80.8
.0 L3640 L0621 70.0 86.4
.5 L3433 -.0050 71.1 90.3
2.0 .3045 -.0368 73.1 92.1
2.5 .2668 -.0459 75.1 92.6
3.0 L2375 -. 0455 76.6 92.6
3.5 .2159 -.0425 77.8 92.4
4.0 .1998 -.0396 78.7 92.3
4.5 L1871 -.0371 79.4 92.1
5.0 .1767 -.0350 80.0 32.0




Outer Solutions

Lo -1/2 . r . -1\
Ayo L2748 (X/2) S TS cot (lyo)

e _ 172 . R . 192
lyo = -.0542 (-X/2) P H, = cot (Kyo)
Multipliers Bank Angles (deg)

r 2 r 2
X A‘Yo A'.Yo uO uo
.25 L7773 -.1533 52.1 98.7
.50 .5496 -.1084 61.2 96.2
1.0 .3886 -.0767 68.8 94.4
2.0 L2748 -.0542 . . 74.6 93.1
3.0 .2248 -.0443 - 77 .4 92.5
4.0 .1943 -.0383 79.0 92.2
5.0 .1738 -.0343 ' - 80.1 92.0
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FIGURE |. MANEUVER SEQUENCE



BANK ANGLE (DEG)

\
r
\/—Mo(OUTER)

0 Hopr.(REF. ')\ \ M, (INNER)
75 N

so-|  Top (REF1) S~
85. B

90, o= - o,
100

105.- \Mf(OUTER)

110.-

1 I~ I T I 1

r i | | 1
-5, -4, -3, -2. -l. 0. |I. 2. 3. 4. 5,

STRETCHED ARC LENGTH (X)

FIGURE 2. BANK AND FLIGHT PATH
ANGLE COMPARISONS

27



Report Documentation Page

NIHONG S NAUICS ARG
| ACe AT AON

¥

1. Report No. [ 2. Government Accession No.

NASA TM-101639

3. Recipient’s Catalog No.

4. Title and Subttle

Guidance Analysis of the Aeroglide Plane Change
Maneuver as a Turning Point Problem

5. Report Date
December 1989

6. Performing Organization Code

7. Authorls)

Christopher Gracey

8. Performing Organization Report No.

g. Parforming Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665-5225

10. Work Unit No.

505-66-01-02

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

13. Type of Report and Period Covered
TECHNICAL MEMORANDUM

14. Sponsoring Agency Code

15, Suppiementary Notes

. Abstract

The development of guidance approximations for the
problem 1s described.
angle control. The turning point problem solution,
optimal control policy,

which are tabulated, and integral expressionms,
computed.

optimal control solutions show good qualitative agreement.
work and analysis 1is needed to compute the guidance approximation work.

atmospheric (aeroglide)
portion of the minimum fuel, orbital plane change, trajectory optimization
Asymptotic methods are used to reduce the two point,
boundary value, optimization problem to a turning point problem for the bank
which yields an approximate
is given in terms of parabolic cylinder functions,
which must be numerically
Comparisons of the former, over their region of validity, with

Additional

17. Key Words (Suggested by Authoris}]

aeroglide, aero-assist, asymptotics,
guidance approximations, trajectory
optimization, turning point problem,

singular perturbations

18. Distribution Statement
UNCLASSIFIED - UNLIMITED

Subject Category 08

70. Security Classif. (of this page)
UNCLASSIFIED

“Security Classif. (of this report)
UNCLASSIFIED

22. Price
AO3

21. No. of pages
28

NASA FORM 1626 OCT 86




